A self-propelled biohybrid swimmer at low Reynolds number
نویسندگان
چکیده
منابع مشابه
A self-propelled biohybrid swimmer at low Reynolds number.
Many microorganisms, including spermatozoa and forms of bacteria, oscillate or twist a hair-like flagella to swim. At this small scale, where locomotion is challenged by large viscous drag, organisms must generate time-irreversible deformations of their flagella to produce thrust. To date, there is no demonstration of a self propelled, synthetic flagellar swimmer operating at low Reynolds numbe...
متن کاملA circle swimmer at low Reynolds number.
Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. Fo...
متن کاملOn self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer
Using slender-body hydrodynamics in the inertialess limit, we examine the motion of Purcell’s swimmer, a planar, fore–aft-symmetric three-link flagellum or propulsive mechanism that translates by alternately moving its front and rear segments. Purcell (1976) concluded via symmetry arguments that the net displacement of such a swimmer must follow a straight line, but the direction and other deta...
متن کاملThree-sphere low-Reynolds-number swimmer near a wall.
We study the influence of a wall on the dynamics of a low-Reynolds-number three-sphere swimmer. A far swimmer whose arm makes an angle theta with the horizon experiences the wall presence as an angle-dependent quadrupole force proportional to (a/L)(2)(L/z)(2)cos theta, where a, L, and z are the radius of spheres, the arm length, and the swimmer distance to the wall, respectively. The wall-induc...
متن کاملVersatile low-Reynolds-number swimmer with three-dimensional maneuverability.
We design and simulate the motion of a swimmer, the Quadroar, with three-dimensional translation and reorientation capabilities in low-Reynolds-number conditions. The Quadroar is composed of an I-shaped frame whose body link is a simple linear actuator and four disks that can rotate about the axes of flange links. The time symmetry is broken by a combination of disk rotations and the one-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2014
ISSN: 2041-1723
DOI: 10.1038/ncomms4081